Cerca nel sito per parola chiave

pubblicazioni - Memoria

Big Data from Cellular Networks: How to Estimate Energy Demand at real-time

pubblicazioni - Memoria

Big Data from Cellular Networks: How to Estimate Energy Demand at real-time

Questo articolo propone un approccio per la stima in tempo reale della domanda di energia attraverso modelli probabilistici alimentati da sorgenti big data eterogenee. Questa soluzione può essere utilizzata dagli energy provider al fine di indirizzare il requisito di previsione della domanda richiesto dalle future smart grid e smart cities senza dover compiere modifiche gravose all’attuale infrastruttura. L’approccio è stato validato con buoni risultati nella città di Milano attraverso l’utilizzo di dati provenienti dalla telefonia cellulare.

Efficient energy planning is a key feature for the future smart cities. The real-time optimization of the energy distribution and storage is the real added value for smart grid and cities. However, the available energy providers’ infrastructures are not able to estimate and predict real-time fluctuation of the energy demandand are not scalable enough to integrate, with low cost and effort, hardware elements able to estimate energy demand in real-time.

The solution proposed in this paper exploit heterogeneous big data sources to forecast in real-time energy demands without requiring physical interventions on the energy providers’ infrastructures.The proposed approach is mainly based on the use of probabilistic models and it exploits cellular network big data as independent variable to estimate energy demand without observing the actual behavior of the energy network.

Distributor System Operators can use these estimations to selfmanage the energy demand, distribution and storage in real-time, without any user intervention.The approach has been extensively validated in a real world case study for the Milan city, in the production infrastructure of Vodafone Italy and with all the Vodafone Mobile Users, and the quality of the probabilistic models in forecasting energy consumption is really promising.

Progetti

Commenti