Cerca nel sito per parola chiave

pubblicazioni - Articolo

Performance tests of a small hydrogen reactor based on Mg-Al pellets

pubblicazioni - Articolo

Performance tests of a small hydrogen reactor based on Mg-Al pellets

On the basis of a previously acquired experience on scaling up issues concerning the use of magnesium hydride as a base material for solid-state hydrogen storage, a small reactor was designed and tested in different operating conditions. It contains about 10 g of catalyzed magnesium hydride powder mixed with 5 wt.% aluminium powder and pressed in the form of cylindrical pellets and the heat flow is managed by means of an oil circulation system. Carbon paper is used to ensure good heat conductivity between the pellets and the inner wall of the reactor and between one pellet and another. A number of hydrogen absorption and desorption cycles at different temperatures and pressures was carried out to compare the behaviour of the small reactor with the laboratory data obtained on small amounts (fractions of grams) of powdered and pelletized samples. Data acquisition for gas flow, pressure and temperature in different positions of the reactor allow a good understanding of internal dynamics. The results in terms of hydrogen absorption/desorption kinetics and of stability to ongoing cycles are stimulating, so that the tested small reactor can be considered as a basic element for further studies and improvements.

On the basis of a previously acquired experience on scaling up issues concerning the use of magnesium hydride as a base material for solid-state hydrogen storage, a small reactor was designed and tested in different operating conditions. It contains about 10 g of catalyzed magnesium hydride powder mixed with 5 wt.% aluminium powder and pressed in the form of cylindrical pellets and the heat flow is managed by means of an oil circulation system. Carbon paper is used to ensure good heat conductivity between the pellets and the inner wall of the reactor and between one pellet and another. A number of hydrogen absorption and desorption cycles at different temperatures and pressures was carried out to compare the behaviour of the small reactor with the laboratory data obtained on small amounts (fractions of grams) of powdered and pelletized samples. Data acquisition for gas flow, pressure and temperature in different positions of the reactor allow a good understanding of internal dynamics. The results in terms of hydrogen absorption/desorption kinetics and of stability to ongoing cycles are stimulating, so that the tested small reactor can be considered as a basic element for further studies and improvements.

Progetti

Commenti